
Copyright (C) 2016 Sebastian Samaruga.
 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License Version 1.3 or any later version published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled "GNU Free Documentation License".

Business domain translation of problem spaces

May 2017. Sebastián Samaruga (​ssamarug@gmail.com​)

Besides some initial type inference over RDF datasets the features here discussed not only
focus on ontology engineering or modeling. The aim is more like to provide an engine (some like
DOM / JavaScript is for HTML) for whatever RDF can be provided for it from whatever sources,
not only DBpedia but seamless integrating RDBMSs / REST / LDP or any other backends /
datasources / protocols.

An important goal will be to be able to work with any given datasources / schemas / ontologies
without the need of having a previous knowledge of them or their structures to be able to work
with them via some of the following features:

Achieve plain RDF serialization to-from any service / backend through Node Bindings (below).

Model statements into layers, each one having its own 'abstractions' for the roles each
statement parts play:

Data layer: Infer type information, Classes / Kinds roles. Properties (domain / range role Kinds).
From facts layer statements (data) infer which property kinds holds for which domain / range
role kinds:

Who is a Person.
Who is a Business.
Which relations (properties) holds between them.

Information (schema) layer: Events which entail Flows given certain statements (relations) roles.

aPerson (hired), worksFor, someCompany (hires);

Knowledge (behavior) layer: Given certain Rules some Messages are ‘activated’.

betterJobOffering, employeeBehavior, jobSwitching;

Knowledge, information and data behavior (CRUD) entails ‘propagation’ into upper / lower levels
of statements updating them accordingly via dataflow graphs (below).

mailto:ssamarug@gmail.com

Data example: aProduct, price, 10;

Information example: aProductPrice, percentVariation, +10;

Knowledge example: aProductPriceVariation, tendencyLastMonth, rise;

Features should be provided by the framework / datastore (alignment):

Align identity: merge equivalent entities (with different URIs). Align types (schema / promotion:
infer type due to role in relation).

Align attributes / links: augment knowledge (properties and values) about entities (because of
type / role alignment).

Align ordering: sort entities regarding some context / axis (temporal, causal, composition and
other relations).

Implement functional query / transformation language: for a given entity / concept (Monad)
being able to browse / apply a function which entails some other result entity (Monads).

Resource endpoints. RESTFul interfaces for metamodels interaction. Provides / consumes
(feeds / streams) events / messages declared via dataflow engine. The datastore should be a
HATEOAS web application.

Implement XSL Driven declarative dataflow engine: Streams ‘pipes’ declaratively stated in XSL
for reactive behavior definitions. Functional query / transform semantics. Datastore application
publish / subscribe to this (request / response 'filters').

Implement a 'Node' abstraction: Integration of diverse (wrapped into metamodels) datasources /
backends / services / protocols via the implementation of service contracts and exposing a plain
RDF IO (dialog protocol) interface. A Node Binding to other Nodes shall allow to integrate via
dataflow semantics diverse datasources / datastores.

Provide discovery services for data / schema / behavior (bus / stream events actors and roles).
Bind Profiles by ontology metamodel alignment: Registry: Ordering alignment, Naming: ID and
instance matching alignment, Index: Links and attribute alignment. Big Data and EAI integration
patterns. Reactive adaptive dataflow containers (criteria instead of hardcoded addresses).

Streamline analysis and knowledge discovery enabling enhanced and augmented process
flows.

Abstract:​ The concept revolves around a network of (perhaps existing network’s) Peers which
interacts in the aims of fulfilling business Objectives (Task flows) for which Peers are selected to
perform regarding their Profiles and a given Purpose they and Objectives are proposed to
accomplish. A Purpose is a kind of ‘abstract goal’ to be met. Profiles are the (maybe evolving)
capabilities for the resolution of Objectives problem kinds.

Given business domains ‘problem spaces’ a ‘translation’ should be made which encompasses
given a set of problem Objectives to be solved in one domain (maybe because of Events in that
domain) another set of co-requirements in other domains which triggers new Objectives into the
flow which shall be accomplished for the global Purpose to be met.

An example: In the healthcare domain an Event: flu diagnose growth above normal limits is to
be translated in the financial domain (maybe of a government or institution) as an increase of
money amount dedicated to flu prevention or treatment. In the media or advertisement domain
the objectives of informing population about prevention may be raised. And in the technology
sector the tasks of analyzing and summarizing statistical data for better campaigns must be
done.

The technology empowering such endeavor must not be other than that of the graph-oriented
featured semantic web paradigm, with tweaks into functional programming concepts and Big
Data / Machine Learning inference providers.

Nodes:​ Server Peers.​ ​RDF statements IO / ETL syndication / sync to - from any backend /
datasource / service / protocol. Bindings: Engine Peers wrap exposed protocols. Schema aware
‘less’.

Services: Nodes with IO (registry, index, naming, ML, Big Data, reasoner, BRMS, etc) provider
Nodes.

Discovery by profile: criteria / patterns instead of endpoint addresses. Referrer contexts.

Layering:​ Aggregation. Data, information, knowledge. Resource hierachy meta models. Quads
(reified). Graph serialization (Apache Jena). Entities: Class / Kind, Event / Flow, Rule /
Message.

Alignment:​ Behavior: Order (registry, JCR provider). Schema plus roles: Rels / links (index,
Apache Lucene provider). Data:Identity (naming, JAF / NLP provider).

Discovery. Internal upper ontology. Sust, Verb, Adj. Reify layers entities. Terms (reified
grammars, dimensional, rules). Constraints. Shapes. Domain / range, ordering rels comparisons
inference.

Functional (query / transforms) API:​ Monadic. Reactive dataflow (distributed nodes activation
graph). IO format: Resource metamodel hierarchy.

Terms: internal upper ontology aligned. Variables, placeholders. Pointers: resolve subject in role
in context (Semantic pattern IDs).

XSL Declarative reactive streams dataflow:​ DCI (Message, Subscriptions, Processor).
Functional transforms declarations plus Terms. Events pipes / routing. Resource ‘activation’:
layers / reified Nodes propagation. Actor / role. Reified Resources into transforms (dynamic /
patterns) addressable. DCI dynamic behavior.

RESTFul Resource hierarchy endpoints:​ XSL filters / activate inputs and outputs. Generates
derived (activated / augmented) statements. Activates functional layers aggregation.
HATEOAS: JSONLD / HAL.

Engine:​ Generic client (Peer, browser). Transforms (wraps) Node into protocols / schemas.
‘Semantic ORM’ (Dynamic Object Model, Actor / Role DCI, JAF). HTML DOM / JS like platform
bindings. Declarative discovery / activation. Reactive platform bindings (Java, JS, etc) over
RESTFul Resource endpoints.

Business Domain Translation of Problem Spaces:​ TBD.

Generic client (browser):​ Peer configuration, discovery, ETL. Dashboard (default app: CRUD /
Social / Process workflows, etc.).

TBD.

