
1 Introduction

1.1 Declarative application metamodels.
The main idea is to be able to merge diverse datasources (from existing applications databases
for example) and from they and their metadata expose 'declarative' application models which
can be used for domain driven front ends or services.

This is to be accomplished through the use of a hierarchical 'reference model’ for all types of
resources which, by the means of Big Data and learning capabilities, is enabled to provide
inference and further 'Features’ over these representations.

The 'representations’ mentioned (discussed in section 2.2) are nothing but just the maximum
possible de-aggregation (or reification) of resources and statements from RDFized inputs, being
they become enabled to have an uniform 'Resource reference model’ and allowing for
composition into layers, Models and Containers. This pattern intention is to allow for
composition of layers and, ultimately, to be able to compose bindings for Adapters and Ports
which are the Runtime’s final input and output bindings.

2 Architecture

2.1 Statement graphs. Dataflow (Reified CSPO Resource
statements).
Resources (not only Statements) are 'reified’ into a Resource object which takes into account
Context, Subject, Predicate and Object as members of the reified Resource. (Statement, SPO
or Kind).

Resource.holds(ctx : Resource, res :Resource);

Resource.apply(ctx : Resource, res :Resource);

2.2 Models and core classes: Declarations and instances.
Classes / interfaces. Factory, instantiation. Hierarchies. sameAs / domain / range / restrictions
for RDFS/OWL representation.

Declarations:

Resource : Class (Predicate, Resource, Resource, Resource);

Predicate : Resource (Set, Resource, Resource, Resource);

Set : Predicate (Statement, Predicate, Resource, Resource);

Statement : Set (Model, Set, Predicate, Resource);

Model : Statement (Container, Statement, Set, Predicate);

Container : Model (Adapter / Port, Model, Statement, Set);

Adapter / Port (Runtime, Container, Model, Statement);

Instances:

ResourceInstance : Instance (PredicateInstance, ResourceInstance, ResourceInstance,
ResourceInstance);

PredicateInstance : ResourceInstance (SetInstance, ResourceInstance, ResourceInstance,
ResourceInstance);

SetInstance : PredicateInstance (Statement, PredicateInstance, ResourceInstance,
ResourceInstance);

StatementInstance : SetInstance (ModelInstance, SetInstance, PredicateInstance,
ResourceInstance);

ModelInstance : StatementInstance (ContainerInstance, StatementInstance, SetInstance,
PredicateInstance);

Statements:

(Class, Instance) (Class, Instance) (Class, Instance);

2.3 CSPOS, Kinds and Statements. Reification. Models.
Contexts, Subjects, Predicates and Objects declarations and instances are direct subclasses of
Resource and ResourceInstance respectively.

A special type of Resource are 'Kind’s. Each SPO in a Statement has its corresponding Kind
which has an ‘attribute’ and a 'value’ in respect to its position in the triple. For example, the
triple:

(Peter) (worksAt) (IBM)

Has a 'SubjectKind’ of (worksAt, IBM) for its Subject (Peter). Subject’s attribute and value are
(worksAt) and (IBM) respectively. This metadata could be used for basic type inference by
aggregating Employees (worksAt domain) and specific employees (which work at IBM).

The same holds for classifying Predicates and Objects into their types and their corresponding
meta-types. Different Model layers (discussed later) have its own (Predicate based) SPO Sets
definitions and, thus, their own Statement and Kind structures.

Kinds reification may be performed given, for example, this example 'Employee’ SubjectKind
becoming a 'Employee’ Subject. This way attributes and links may be stated for the 'Employees’
set in general.

2.4 Application core Models (layers) class and instance
declarations.
The first Model (Facts) is built from raw input triples (SPOs) and its Kinds are aggregated
according its Statements and Resource occurrences.

Then, TopicModel’s Statement and SPO instances are Resource Sets built from Predicates
which take previous Model Sets (Facts) Statements, Kinds and SPOs for building Model’s SPO
respectively. The same pattern is applied for building BehaviorModel layer.

FactModel
SPO: (Subject, Predicate, Object).
Kinds: SubjectKind (PO), PredicateKind (SO), ObjectKind (SP).
Statements: (FactCtxPred, Subject, Predicate, Object).

TopicModel
SPO: (Object: FactModel’s Statements, Concept: FactModel’s Kinds, Sign:FactModel’s SPOs).
Kinds: ObjectKind, ConceptKind, SignKind.
Statements: (TopicCtxPred, Object, Concept, Sign).

BehaviorModel
SPO: (Topic: TopicModel’s Statements, Scenario: TopicModel’s Kinds, Player: TopicModel’s
SPOs).
Kinds: TopicKind, ScenarioKind, PlayerKind.
Statements: (BehaviorCtxPred, Topic, Scenario, Player).

ActionModel

SPO: (Event : FactStatement, Flow : TopicStatement, Rule : BehaviorStatement).
Kinds: EventKind, FlowKind, RuleKind.
Statements: (ActionCtxPred, Event, Flow, Rule).

Grammars (Facts example)
SPO: (SubjectKind, PredicateKind, ObjectKind) non-terminals.
Kinds: Subject, Predicate, Object (terminals).
Statements: Kinds / SPOs (rules, productions).

Services

ModelInstances act as 'Facades’ and they aggregate its contents. For example a Facts
ModelInstance aggregates all statements for a particular Subject (anOrder). A Topics
ModelInstance aggregates all statements for a particular type of Topic (orders) and Behavior’s
ModelInstance aggregates all related to a specific behavior (sales).

2.5 Services. Reactive Models for Containers.
Services are a special type of Models held by Containers in their scope which take into account
special types of events / messages. Services listen to / send messages which keep models in
sync with metadata they process, transform and provide.

Materialized service commands statements.

Resource.apply(ctx, cmd);

2.6 Resources reference model (Index, Naming and Registry
Services).
Reference model are the means to provide an unified API over Resources to query / manipulate
its state via the notion of 'mappings’ (links and attributes) held by an Index Service, a
hierarchical location in a context graph handled by a Registry Service and a name enabled
order comparison mechanism provided by a Naming Service.

Services are Models and thus reactive to its Container Model’s events and push events to its
Containers. Services apply to 'schema’ (declarations) as to instances and statements.

2.7 Functional API
Functional API is the core low-level client API exposed by the Runtime hierarchy for interaction
with its held Resources. Most of the features rely on Resource’s methods 'holds(ctx, res)’ and
'apply(ctx, res)’.

2.7.1 Dialog / Dataflow Protocol. Message Statements
Statements (messages) are produced / consumed by Models. Reactive dataflow is performed
'applying’ 'held’ resources (materializing results from this operations). For establishment of this
type of 'connection’ an Adapter and a Port must be stated on each Runtime (Peer / Client /
Server) side.

Action layer (Addressable data, role, context/interaction. Reference model pattern matching: O,
P, S, C) resources: materialized behavior schema/instance. Interaction Dialog (Protocol) against
layer Facades. Dataflow resolution for unbound resources resolves bidirectionally from
Adapter/Port resources.

Messages IO performs a dialog like protocol in which wildcard and variable placeholders are
allowed. Message submission may resolve into a response which has placeholders to be filled
which produces client (original sender) to receive the message for trying to resolve missing data
from its own models.

2.7.2 Containers, Models and Messages discovery and binding (Profiles)
One should be allowed to interact with a Model (Facade) Container querying for its allowed
message / events (Statements) and retrieving the Sets (Profiles) for which the messages holds
(Predicate / Template, addressable transform).

As with the message dispatch approach (below) this 'discovery’ (wire bindings, DHT) may be
performed inside-out (from Resource / Template) using routing tables or iterating from container
through children. Reference model pattern matching (O, P, S, C).

This way querying, for example, Action layer facade should bring declaratively (through
reference model browse) which classes, instances, contexts, interactions and roles are
available for a given domain.

2.7.3 Client binding: DOM / DCI patterns over declarative Action Model
layer metadata
From declarative layers metadata build DOM (Dynamic Object Model) with classes, instances,
contexts, roles and interactions objects for specific Runtime language bindings (Java,
JavaScript, C, etc.).

JAF enabled content types and commands (JavaBeans Activation Framework) design pattern
for REST enabled operations.

Monads. Materialize messages / dialogs. Addressable contexts / interactions. Functional design
patterns.

3 Features

3.1 Align, merge. Identity resolution (by reference model).
Algorithms.
‘Resource.holds(ctx : Resource, res : Resource)’ is the main method for alignment, merge and
identity (equivalence) resolution. It relies on Resource’s reference model Index Service.

Index Service listen to events over Model Resources and resolves its mappings in context
(attributes, links, relationships). It also posts events materializing this knowledge into
statements. For this it uses aggregation, discovery, learning, classification and regressions over
previous knowledge.

Facade / Templates declarative expressions.

3.2 Attribute and links discovery (by reference model)
Index Service. Facades / Templates declarative expressions

Resource.apply(ctx : Resource, res : Resource);

3.3 Ordering and temporal alignment (by reference model)
Naming Service listen to events over Model Resources and resolves its positions in contexts
(prev / next). It also posts events materializing this knowledge into statements. For this it uses
aggregation, discovery, learning, classification and regressions over previous knowledge.

Facade / Templates declarative expressions.

3.8 Type inference (by reference model)
Index Service. Facade / Templates declarative expressions.

Attribute and links discovery.

3.5 Relationships browse
Registry Service listen to events over Model Resources and resolves its hierarchies in contexts
(parents / children). It also posts events materializing this knowledge into statements. For this it
uses aggregation, dicovery, learning, classification and regressions over previous knowledge.

Example: (Peter, Joe) : where neighbors, then friends, and then partners. Transitions. Truth
values (temporal, for ordered 'names').

3.6 Grammars
Grammars (Facts example)
SPO: (SubjectKind, PredicateKind, ObjectKind) non-terminals.
Kinds: Subject, Predicate, Object (terminals).
Statements: Kinds / SPOs (rules, productions).

Primitive terms.
Opposite terms.
Negation terms.
Inverse terms.
Complement.

Materialize terms (context, role, term).

3.7 Datatypes
Primitive (enumerable) types.
Grammars. Rules (class). Production (instance).

3.8 Dimensions
Dimension. Unit. Value.
Materialize: (someValue, someProp, someObj).

Data, information, knowledge: price, price variation, price tendency.

3.9 Learning
Service Models Features

Aggregation.

Classification.

Regression.

Dimensional.

Alignement.

FCA. Augmentation.

3.10 Upper ontology alignment. RDFS/OWL Model
Event propagation keeps RDFS/OWL Jena model (upper ontology) aligned and in sync with
core models. RDF / SPARQL endpoints.

4 Backend
Learning and Big Data features.

4.1 Jena backend: Reified statements. RDFS / OWL
All declaration, instances and statements conform to a core ontology and are represented into a
Jena model.

4.2 WebDAV / JCR (Registry)
Hierarchical datastore implementation for Registry Service. Contextual: a Resource may have
multiple occurrences in different contexts.

4.3 Lucene / Solr (Index)
Indexing component for Resources (attributes, links, relations). Contextual. Same resource
multiple occurrences. Index Service backend.

4.5 JNDI (Naming)
Namespace domain resolution for ordered set (flow) of Resource (states) in context. Naming
Service backend.

5 Deployment

5.1 Runtime
Base environment configuration for core models execution / interactions.

5.2 Peers (Container)
Main Runtime deployable / bindable unit into Clients / Servers.

5.3 Clients (Ports)
Exposes its underlying Peer as a service (API).

5.4 Servers (Adapters)
Configured to be bound as a source for containers (datasource).

6 Applications
Dashboard: peer manager console.

Declarative (model driven) architecture through language bindings of Action layers Facades,
DOM (dynamic object models), JAF (JavaBeans Activation Framework) and DCI/MVC design
pattern over Protocol/Dialogs.

Runtime

Environment configuration.

Adapters / Ports Containers set up (datasources, peer application Models bindings).

Protocol endpoint. REST RDF Service endpoints. Queues, routes, transformations. Dispatch.

Messaging / Events dispatch:

1. Adapter / Port sends / receives Resource in payload.
2. Container iterates its Models
3. Model iterates its Statements
4. Statement iterates its Sets
5. Set iterates its Predicates
6. Predicate iterates its Resources
7. Retrieve / build Statement. Return (eventually incomplete, vars / wildcards) Statement

For reverse lookup (from Resource) build resolution / routing tables. Dataflow (reactive)
traversal may start from leaves (Resource Object, Predicates, Subjects till Contexts) using
tables or from outer Resources, each case being Resources visited (holds/apply invoked on

them) and using their response for building adequate objects in the hierarchy (Reference model
pattern matching: O, P, S, C).

Routing tables lazily populated on demand: when no data is contained for input of a particular
Resource into routes tables then the full traversal is performed populating the tables accordingly
for later use.

Resource.apply(Resource) : Predicate
Resource.apply(Predicate) : Set
Resource.apply(Set) : Statement
Resource.apply(Statement) : Model

Callbacks: specific events, filter messages.

Lab
Octal order relation encoding.

Encoding and addressing of IDs. Mappings to URIs.

Patterns: ie.: SK matches Subjects. ID ops.

Statements materialization: Triple IDs (x, y) (x, y) (x, y). Classes / Instances IDs. Each with its
context, occurrence, attribute and value (CSPO).

Learning

Reference Model inference: Generate reference model services messages / events from
materialized statements. Functional mappings inference: Index Service events (ID equivalence
resolution). Registry Service events (Hierarchical aggregation). Naming Service events
(Alignement and contextual ordering/sort).

ID Resolution / merge: merge all possible statements with KB. Resolve ambiguity using
reference model, Templates.

ID Resolution / merge: Ps column equivalent, Os column equivalent, Ss column equivalent
(cycles).

Order resolution: materialize inverse, opposite, complement. Agrupate Events, flows, rules
(action, passion, state) and kinds terms by ordering metadata (learn, dict.). Dimensional 'natural’
order.

